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Artificial Intelligence and Arthroplasty at a Singl e Institution: Real-World 1 
Applications of Machine Learning to Big Data, Value-Based Care, Mobile Health, 2 
and Remote Patient Monitoring 3 
 4 

 5 
 6 
ABSTRACT  7 
Background 8 
Driven by the recent ubiquity of big data and computing power, we established the 9 
Machine Learning Arthroplasty Laboratory (MLAL) to examine and apply artificial 10 
intelligence (AI) to musculoskeletal medicine.  11 
Methods  12 
In this review, we discuss the two core objectives of the MLAL as they relate to the 13 
practice and progress of orthopaedic surgery: (1) patient-specific, value-based care and 14 
(2) human movement.  15 
Results  16 
We developed and validated several machine learning-based models for primary lower 17 
extremity arthroplasty that preoperatively predict patient-specific, risk-adjusted value 18 
metrics, including cost, length of stay, and discharge disposition, to provide improved 19 
expectation management, preoperatively planning, and potential financial arbitration. 20 
Additionally, we leveraged passive, ubiquitous mobile technologies to build a small data 21 
registry of human movement surrounding TKA that permits remote patient monitoring to 22 
evaluate therapy compliance, outcomes, opioid intake, mobility, and joint range of 23 
motion. 24 
Conclusions  25 
The rapid rate with which we in arthroplasty are acquiring and storing continuous data, 26 
whether passively or actively, demands an advanced processing approach: artificial 27 
intelligence. By carefully studying AI techniques with the MLAL, we have applied this 28 
evolving technique as a first step that may directly improve patient outcomes and practice 29 
of orthopaedics. 30 
 31 
Keywords: machine learning; arthroplasty; value; big data  32 
 33 
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 40 

Introduction 41 

The theory behind artificial intelligence (AI) has become a reality with the 42 

ubiquity of cloud storage and fast computer processors and a commitment to aggregating 43 

big data. In orthopaedics, the success of a procedure can be defined not by the anatomic 44 

restoration on x-ray or the improved motion of a joint, but also by the subjective nature of 45 

how the patient - not the surgeon - feels after the procedure. This has led to a 46 

paradigmatic shift in orthopaedic practice and led to a systematic effort to collect patient-47 

reported outcome data. After the use of countless outcomes scores and multiple registries 48 

over the past two decades of arthroplasty research, we can finally ask the question: what 49 

do we do with all of this aggregated data? 50 

Machine learning encompasses computers that can be trained to assist humans with 51 

little to no human continuous effort. As Eric Topol penned, high-performance medicine 52 

demands “the convergence of human and artificial intelligence [1].” On one hand, the 53 

expenditures exceed outcomes in a flawed United States health care business model 54 

whereby marginal capital yields diminishing returns. On the contrary, an unimaginable 55 

volume of data, or “big data,” is being generated from biosensors, imaging storage, 56 

electronic medical records, and genome sequencing, such that careful analysis is required 57 

to make this information useful, mandating a machine-based approach or algorithm. At 58 

our institution, we have made a concerted commitment to outcomes-based care with the 59 

OrthoMiDaS Episode of Care (“OME”), which collects treatment documentation from 60 

providers and patients at the beginning and end of a given elective surgical episode of 61 

care, to determine if surgery has met expectations [2,3]. 62 
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 63 

The Machine Learning Arthroplasty Laboratory 64 

In recognition of the rapid rise of big data and the ubiquity of powerful machines 65 

capable of “learning,” in 2018 we established the Machine Learning Arthroplasty 66 

Laboratory (MLAL). It is our view that computer-based algorithms represent the primary 67 

sustainable way for the future that orthopaedic surgeons who desire to make sense of, and 68 

take advantage of, all available data to yield the best possible outcomes for patients and 69 

the health care system. The MLAL was established to create machine-learning algorithms 70 

that would explore two core objectives directly related to the practice and progress of 71 

orthopaedic surgery: (1) patient-specific, value-based care and (2) human movement. 72 

Orthopaedic care and the MLAL operates on two fundamental planes: systems-based and 73 

practice-based. At the system level, outcomes and costs are the two primary determinants 74 

for value-based care. However, what is viewed as high in value by some patients may not 75 

hold true for other individuals. This is evident when comparing patients who desire to run 76 

a marathon after their total hip arthroplasty versus those who simply want to make it to 77 

the grocery store. Thus, “value” in medicine is patient-specific, and machine learning 78 

offers the ability to account for these patient-level factors and deliver a customized or 79 

individualistic approach to value-based care. While the business of medicine is important 80 

for survivorship of our industry, the art of practicing medicine rests on taking into 81 

account patient-level preferences. With respect to the MLAL’s practice-based goals, we 82 

seek to find and apply machine-learning solutions that improve upon the routine 83 

orthopaedic practice of medicine by prioritizing the patient, assisting the physician, and 84 

benefitting relevant stakeholders (e.g. hospitals, institutions, and payers).  85 
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Patient-Specific and Value-Based Care in the World of Arthroplasty  86 

The early focus of the MLAL on value-based care has followed the legislation 87 

and conversation surrounding alternative payment models (APMs). In lower extremity 88 

joint arthroplasty, the Comprehensive Care for Joint Replacement (CJR) model aims to 89 

apply bundled payments and quality measures to incentivize high quality, coordinated 90 

care at a reduced cost. The value-based program has led to early success for programs 91 

participating in the Bundled Payments for Care Improvement (BPCI) in total joint 92 

arthroplasty.  By aligning surgical and administrative staff to reduce clinical and financial 93 

variations at one high volume orthopaedic hospital, length of stay (LOS) decreased from 94 

3.4 days to 2.7, catheter-associated urinary tract infections decreased to 0%, and 30-day 95 

readmissions decreased from 5% to 1.6% [4]. Moreover, $522,389 was saved over 271 96 

patients, resulting in gain sharing of $159,571 to the Centers for Medicare and Medicaid 97 

Services (CMS) and $362,818 to the hospital. While preliminary successes have been 98 

promising for controlling modifiable systemic risk factors related to inefficient care 99 

delivery, “bundling care” as a definitive solution does not address patient-level risk 100 

factors.  101 

Bundled payment literature surrounding primary total knee arthroplasty (TKA) 102 

and total hip arthroplasty (THA) demonstrates that patient comorbidities increase 103 

perioperative complications and worse outcomes harbored solely by surgeons and 104 

hospitals, as insurers reimburse a flat rate [5,6]. Even with some of the most reproducible 105 

procedures reimbursed by Medicare, a flat fee for all primary joint arthroplasty patients 106 

regardless of patient differences may not be a tenable alternative payment model (APM) 107 

as the “one size fits all” approach does not account for patient-specific risk. Furthermore, 108 
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this engenders a volume-based practice whereby healthier, lower risk patients are 109 

preferentially selected. This presents a unique ethical challenge for the orthopaedic 110 

surgeon incentivized, and potentially pressured, to “cherry pick” young, healthy patients 111 

and “lemon drop” older patients with comorbidities [7]. To address this problem, and 112 

perhaps provide guidance on how best to stratify and appropriately reward or compensate 113 

care, we endeavored to create a model that would predict which patients will require 114 

additional resources, allowing for preoperative negotiation and risk-sharing between 115 

payers and providers.  116 

As such, we created and validated a Naïve Bayesian classifier algorithm on a 117 

statewide administrative database of approximately 260,000 primary total hip (THA) and 118 

knee arthroplasty (TKA) patients to determine the feasibility of predicting length of stay 119 

(LOS) and inpatient payments [5,6]. Representing a rudimentary form of machine 120 

learning, the Naïve Bayesian classifier is able to study a large dataset, analyze patterns 121 

based on the outcome variable of interest (i.e. cost and LOS), and predict what 122 

predetermined “bucket” to classify a new patient outside the studied dataset would likely 123 

resemble (i.e.. <$12,000, $12-24,000, >$24,000 or < 3 nights, 3-5 nights, or > 5 nights) 124 

based on patterns from the previously imbibed dataset. After stratifying these elective 125 

patients by their level of preoperative medical complexity using validated anesthesia 126 

scoring, we determined the algorithm’s error in predicting cost of resources for each 127 

stratum. Stated simply, the algorithm uncertainty or “error” represents the risk assumed 128 

by the treating surgeon and hospital in the business model of a primary elective lower 129 

extremity arthroplasty. For primary TKA patients, reimbursement tiers warrant increases 130 

of 3, 10, and 15% for moderate, major, and extreme comorbidities; for primary THA 131 
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patients, reimbursement tiers warrant increases of 3, 12, and 32% for moderate, major, 132 

and extreme comorbidities [6,7]. These preliminary studies validate the role of machine 133 

learning in creating a tiered, patient-specific payment model for Medicare’s most 134 

commonly reimbursed procedures in THA and TKA [6,7]. However, the limitation of this 135 

model centered on the use of only a single database population, creating homogeneity 136 

bias, and the inability of a Naïve Bayesian model to output a specific value rather than a 137 

LOS or cost “bucket.” 138 

Similarly, high-risk patients with hip and femur fractures managed with THA, 139 

hemiarthroplasty, or open reduction and internal fixation (ORIF) are equally subject to 140 

perioperative complications and worse outcomes. While the initiative to bundle care for 141 

hip and femur fractures has most recently been aborted by the CMS, these non-elective 142 

procedures would almost certainly result in financial losses for all institutions treating 143 

these patients, building barriers to care where patients are transferred to higher level 144 

acuity centers that can endure the financial burden. Since little to no evidence has been 145 

presented discussing the viability of such a model, particularly to policymakers and 146 

administrators, we similarly applied a Naïve Bayesian model to determine algorithm 147 

accuracy in predicting sustainability of a PSPM using algorithm error [8]. The validated 148 

algorithm resulted in an unsustainable, tiered payment model that increased by 46% for 149 

major comorbidities and 138% for extreme comorbidities. Our findings demonstrate that 150 

the patient’s preoperative medical comorbidities greatly contribute to differential costs 151 

based on the expected payments in an equitable patient-specific payment model.  152 

While the focus of our early value-based work has been on payment models, the 153 

recently published approaches involve simple Naïve Bayesian approaches, which fall 154 
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under the category of “supervised learning.” With this process, more human involvement 155 

is required than “unsupervised learning,” as with deep learning architectures like the 156 

artificial neural network (ANN). Such ANNs offer the opportunity to improve algorithm 157 

accuracy, imbibe external data in multiple formats, and require less effort from humans. 158 

As an example, ANNs represent a subtype of machine learning that could process a 159 

database full of radiographs labeled with implant designs, attempt to identify a 160 

correlation between the radiograph patterns and associated label, then subsequently 161 

identify the implant from a new radiograph if the implant has been previously “learned.” 162 

In essence, these ANNs represent a microcosm of experience-based learning and are even 163 

schematically organized after the human brain with several processing “nodes” densely 164 

connected in an axonal fashion. Like a neuron, one node may receive data from several 165 

other “dendritic” nodes but transmits data forward in a unidirectional fashion. In order for 166 

a node to “fire” or send data, the weight of the incoming variable must be high enough to 167 

stimulate subsequent nodes and establish a correlational relationship. When an ANN is 168 

being trained, all weights and thresholds are initially set to random values. Training data 169 

is fed to the bottom layer, or the input layer, and it passes through the succeeding layers, 170 

getting multiplied and added together in complex ways, until it finally arrives, radically 171 

transformed, at the output layer. During training, the weights and thresholds are 172 

continually adjusted until training data with the same labels consistently yield similar 173 

outputs [19]. As such, the resulting algorithm allows for interconnected relationships 174 

between inputs at various levels, with an increasing complexity of the model based on the 175 

number of inputs. ANNs may be utilized to process a variety of inputs (i.e. patient age, 176 
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gender, comorbidities) into a single output prediction (i.e. hospital charges), based on the 177 

predicted tier that the patient would fall into.  178 

Specifically, the MLAL has developed ANNs modeling economic outcomes 179 

(LOS, charges) following lower extremity arthroplasty, utilizing deep learning techniques 180 

[9,10]. Using a cohort of 175,042 primary TKA patients with 15 pre-operative input 181 

variables, the ANN predicted LOS, charges, and discharge disposition with a 182 

discriminatory power of 74.8, 82.8, and 76.1%, respectively, based on the area under the 183 

curve (AUC) [9]. This model demonstrated increased reimbursements by 2.0%, 21.8% 184 

and 82.6% for moderate, major and severe comorbidities, respectively. Similarly, an 185 

ANN developed for primary THA demonstrated AUCs of 82.0%, 83.4%, and 79.4% for 186 

LOS, charges, and disposition, respectively, with charges increasing by of 2.5%, 8.9%, 187 

and 17.3% for moderate, major, and severe comorbidities, respectively [10]. As 188 

additional data is collected in the future, these ANNs are capable of further learning and 189 

adjustments in order to improve future predictive capabilities. 190 

Future studies will use multiple databases across the globe for internal and 191 

external validation and algorithm refinement, particularly in the ability to more closely 192 

predict outcome variables. Presently, stratifying patients into “buckets” remains 193 

suboptimal as this increases the risk of oversimplifying patient complexity. However, this 194 

represents a first intermediate step to move beyond the “one size fits all” bundled 195 

payment. As we acquire finer data, algorithms will be able to predict outcomes with finer 196 

accuracy. Other applications of deep learning in orthopaedics may include data from the 197 

electronic medical record, smartphone, or geography to preoperatively identify patients at 198 

risk for readmissions or periprosthetic joint infections prior to the primary procedure.  199 
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 200 

Mobile Health and Remote Patient Monitoring 201 

 Machine learning models may be used to process any large dataset. Beyond the 202 

large outcome datasets in registries, our mobile devices are collecting and storing vast 203 

quantities of “small data” that too warrants study for clinically meaningful insight. 204 

Mobile devices such as smartphones and wearables have become ubiquitous. More than 205 

instant connectivity offered cellular networks and the Internet either in your pocket or on 206 

your wrist, these devices also represent sensors capable of storing tremendous amounts of 207 

personal health data (“mHealth”). The wearables market has grown tremendously since 208 

the announcement of the Jawbone UpTM in 2011 and the subsequent release of the Fitbit 209 

FlexTM in 2013 [11,12]. This relatively new market is expected to be worth $34 billion by 210 

2020 and remains a relatively underutilized tool in healthcare [13]. Although one in six 211 

Americans uses a wearable device and 77% of Americans own a smartphone, the health 212 

care system has failed to meaningfully integrate any of these technologies into clinical 213 

practice that redress workflow, significantly improve care, or decrease costs [14]. Using 214 

mHealth, sensors incorporate many different tracking modalities including 215 

accelerometers, GPS, oximeters, electrocardiograms, gyroscopes, and environmental 216 

sensors that are currently being used by consumers to track general physical activity, 217 

sleep, posture, and locomotion (number of steps, speed, and distance travelled). However, 218 

a limitation of the current mHealth landscape is the fragmentation and lack of 219 

interconnectivity between the myriad of available apps. Moreover, skepticism over the 220 

accuracy of wearables remain. Recently, smartphone based technologies have been found 221 

to be accurate within 7º and 5º of goniometer measurements for shoulder and knee range 222 
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of motion, respectively [15, 20].  The fundamental strength in mHealth relies on data, but 223 

the current state of mobile apps has been limited by the closed nature of proprietary data 224 

format, management, and analysis tools that isolate each app. In other words, all the 225 

passive data collected by these devices are stored in heterogeneous formats dictated by 226 

the various proprietary developers with little to no consideration of aggregating all 227 

available data to yield the greatest insights. Herein lies the strength of the “open” 228 

mHealth architecture, which offers universal data standards and a global interconnected 229 

network [15]. Only once apps are constructed to be “open” can the volume of data be 230 

coherent, scaled, and meaningful. Certainly, as with all electronic medical records that 231 

rely on remote servers, maintaining HIPAA compliance with standard regulatory 232 

oversight must be ensured prior to clinical adoption.  233 

 Once the “small data” of a given individual’s minute-by-minute step count or 234 

heart rate is successfully aggregated into big data, how then do we analyze and make 235 

meaning of this continuous data stream? Machine learning once again becomes essential 236 

in understanding mHealth, which is where the MLAL is critical. Moreover, to foster 237 

bilateral engagement from patient and physician, the user interface must be effortless and 238 

utilize real-time feedback. For this reason, the MLAL has partnered with a proprietary 239 

data-driven orthopaedic solutions developer (FocusMotion, Santa Monica, California) to 240 

create a remote patient monitoring (RPM) system that leverages the power of mHealth 241 

data using open architecture, uses artificial intelligence algorithms to “learn” human 242 

movements, and provides real-time feedback. In order for the system to “learn” a 243 

movement, an activity is labeled (i.e. “straight leg raise”) and subsequently performed 244 

while operating the wearable and all positional signals from the sensors are analyzed and 245 
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“taught” that a particular movement refers to this action. With enough permutations and 246 

repetitions of a particular activity, the algorithm begins to recognize and provide 247 

feedback regarding an activity.  Unlike other platforms, this RPM system is freely 248 

available, compatible with any consumer mobile device, and broadly scalable.  While the 249 

RPM platform is able to study and provide quantitative feedback on any human body 250 

movement, from yoga poses to baseball pitching, we have focused on applying this 251 

technology to the primary arthroplasty setting [16].  252 

Presently, measurement after TKA has traditionally been accomplished through 253 

clinician in-office assessments, validated surveys, or both. Both of these assessments 254 

have inherent limitations related to subjectivity, objectivity, cost-effectiveness, and time. 255 

With the understanding that patients are demanding increased perioperative support and 256 

hospitals are pushed to provide higher quality at a lower cost, we have designed a tailored 257 

RPM platform for the TKA patient that enables data capture of the following: home 258 

exercise plan compliance, daily step count (i.e. activity level), daily knee range of 259 

motion, weekly patient-reported outcome scores (PROMs), and opioid use. By providing 260 

a knee sleeve that pairs to the patient’s smartphone (Figure 1), we prospectively studied 261 

25 primary TKA patients. Prior to study initiation, we recorded the difference in knee 262 

flexion between the app and a goniometer measurement by a single clinician across 10 263 

different knees for 5 arbitrary angles each (range: 5°-135°), which revealed a mean 264 

difference of 7.2° found to be statistically equivocal (p=0.41). Upon study completion at 265 

90 days postoperatively, not a single patient had uninterrupted data collection, 266 

demonstrating excellent connectivity [17]. Moreover, all 22 of the 25 patients available 267 

for follow-up interviews found the system motivating and engaging. Daily home exercise 268 
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program compliance with automated notification reminders pushed to the patient was 269 

62% within the first 90 days postoperatively. Data from two patients are presented 270 

(Figure 2). This platform is one of several mobile applications being used worldwide to 271 

perioperatively assess and communicate with TKA patients [18–20]. Opioid use typically 272 

stopped by post-operative day five, and mean mobility returned to baseline at six weeks. 273 

This study addresses a critical barrier in the capture of outcome and therapy compliance 274 

data that has been previously limited by patient access, discontinuous data, high overhead 275 

cost, and capable technology.  276 

From the patient perspective, we have found the RPM platform to engender 277 

engagement with their recovery by gamifying the rehabilitation experience with real-time 278 

feedback with a live avatar, a dashboard that is both clinician facing and patient facing, 279 

and push notifications reminding the patient to perform exercises and complete surveys. 280 

Aside from potentially decompressing redundant pre-paid clinic visits in the global 281 

period for the surgeon or physician assistant, there is no change to the workflow or 282 

additional burden of expectation aside from a notification that a patient has not reached 283 

90 degrees of flexion at a predetermined post-operative time point. Additionally, CMS 284 

may permit durable medical equipment and RPM billing for this system. Hospitals stand 285 

to gain savings in decreased outpatient therapy expenditures, allowing for more profit 286 

from the flat bundled payment, as well as potential decreases in outcome tracking 287 

expenditures. To administrators and policy makers, this RPM platform provides the 288 

objective parametric data needed in an increasingly value-based care model. Specifically, 289 

knowledge of the preoperative state in terms of function, pain, and limitations in 290 

activities of daily living may be postoperatively compared to determine the “value” of the 291 
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TKA. Conversely, this technology offers surgeons the opportunity to identify potential 292 

causes for unfavorable outcomes by capturing therapy noncompliance despite a thorough 293 

discussion of expectation management and well-executed surgical plan. These benefits 294 

are realized with little to no overhead or administrative cost given the ubiquity of mobile 295 

devices and Internet connectivity.  296 

While the MLAL is using the technology for immediate clinical application at our 297 

institution, the 18,000 data points gathered from a single set of patient exercises offers a 298 

valuable small data repository of human movement that may be used for further 299 

investigational biomechanics studies. One of the greatest implications of this research is 300 

characterization of the “normal” postoperative trajectory using continuous data points 301 

that can be used for benchmarking. As more individualized “small data” is aggregated 302 

from patients, population-level commonalities and differences may be analyzed for 303 

contributing factors (i.e. socioeconomic status, gender, age, and comorbidities) to guide 304 

expectation management, shared decision-making, optimization of any modifiable risk 305 

factors, and future policy.  306 

 307 

Conclusion 308 

 Not too long ago, big business was a foreign concept to physicians. Today, many 309 

are well versed in the practice and have been forced to self-teach fundamental business 310 

principles to adapt to the changing times of an increasingly value-based care model. 311 

Tomorrow’s next challenge for the field of medicine, and particularly value-centered 312 

orthopaedics, is utilizing big data. The rapid rate with which we are acquiring and storing 313 

continuous data, whether passively or actively, demands an advanced processing 314 
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approach: machine learning. While machine learning remains a subset of artificial 315 

intelligence, the dissociation between man and the machine is a concept we must begin to 316 

embrace as a profession and subsequently harness to our benefit. By carefully studying 317 

machine learning techniques (i.e. MLAL) and adapting them into our clinical workflow 318 

and systemic infrastructure, we may be successful in achieving “high performance 319 

medicine.” For orthopaedics, and high volume subspecialties like arthroplasty in 320 

particular, this means remaining at the forefront in knowledge of the strengths and 321 

limitations of these evolving technologies that most certainly will directly impact our 322 

field. Permitting automation should not necessarily raise suspicion, as certain time-323 

consuming processes (i.e. “clicks” in the electronic medical record) may indeed warrant 324 

automation. On the other hand, as physicians we must learn to recognize how these 325 

algorithms can be applied to calculate previously immeasurable metrics, from 326 

preoperative patient risk to rehabilitation compliance, and offer great room for innovation 327 

that may translate into improved patient care, reduced surgeon burnout, and controlled 328 

resource costs.  329 

330 
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399 
Figure 1. Schematic of the remote patient monitoring platform. First, the knee sleeve 400 
transmits basic spatial data to the smartphone during a standard post-operative 401 
rehabilitation TKA exercise. Then, the smartphone transmits this data through the 402 
artificial intelligence (AI) processor that analyzes the data and immediately returns real-403 
time feedback to the patient regarding number of repetitions, max flexion, or if lacking 404 
extension. If the patient does not reach 90° of flexion by two weeks postoperatively, the 405 
surgeon is notified. 406 
 407 
 408 

 409 
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Figure 2. Summative dashboard data from two patients recovering from TKA who both 410 
found the remote patient monitoring platform “highly motivating.” The trend of their 411 
rehabilitation compliance and improving outcome scores (i.e. KOOS, self-reported), knee 412 
flexion, pain (self-reported), activity (i.e. step count), and opioid independency (self-413 
reported) are depicted.  414 


