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Artificial Intelligence and Arthroplasty at a Singl e Institution: Real-World
Applications of Machine Learning to Big Data, ValueBased Care, Mobile Health,
and Remote Patient Monitoring

ABSTRACT

Background

Driven by the recent ubiquity of big data and cotmmupower, we established the
Machine Learning Arthroplasty Laboratory (MLAL) &xamine and apply artificial
intelligence (Al) to musculoskeletal medicine.

Methods

In this review, we discuss the two core objectivkhe MLAL as they relate to the
practice and progress of orthopaedic surgery: &ligpt-specific, value-based care and
(2) human movement.

Results

We developed and validated several machine leafvésgd models for primary lower
extremity arthroplasty that preoperatively pregiatient-specific, risk-adjusted value
metrics, including cost, length of stay, and disgkalisposition, to provide improved
expectation management, preoperatively planning partential financial arbitration.
Additionally, we leveraged passive, ubiquitous n®bechnologies to build a small data
registry of human movement surrounding TKA thatpiés remote patient monitoring to
evaluate therapy compliance, outcomes, opioid @tatobility, and joint range of
motion.

Conclusions

The rapid rate with which we in arthroplasty argquagng and storing continuous data,
whether passively or actively, demands an advapostessing approach: artificial
intelligence. By carefully studying Al techniquegiwthe MLAL, we have applied this
evolving technique as a first step that may diyeictiprove patient outcomes and practice
of orthopaedics.

Keywords: machine learning; arthroplasty; value; big data
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Introduction

The theory behind artificial intelligence (Al) hascome a reality with the
ubiquity of cloud storage and fast computer prooessand a commitment to aggregating
big data. In orthopaedics, the success of a praeazhn be defined not by the anatomic
restoration on x-ray or the improved motion of mfobut also by the subjective nature of
how the patient - not the surgeon - feels aftemptioeedure. This has led to a
paradigmatic shift in orthopaedic practice andtted systematic effort to collect patient-
reported outcome data. After the use of countlessomes scores and multiple registries
over the past two decades of arthroplasty researeltan finally ask the question: what
do we do with all of this aggregated data?

Machine learning encompasses computers that craibed to assist humans with
little to no human continuous effort. As Eric Topa&nned, high-performance medicine
demands “the convergence of human and artificielligence [1].” On one hand, the
expenditures exceed outcomes in a flawed UnitegSteealth care business model
whereby marginal capital yields diminishing retur@s the contrary, an unimaginable
volume of data, or “big data,” is being generatexif biosensors, imaging storage,
electronic medical records, and genome sequensirady, that careful analysis is required
to make this information useful, mandating a maetbased approach or algorithm. At
our institution, we have made a concerted commitriceautcomes-based care with the
OrthoMiDaS Episode of Care ("OME”), which colle¢teatment documentation from
providers and patients at the beginning and eradgiwen elective surgical episode of

care, to determine if surgery has met expecta{@,33.
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The Machine Learning Arthroplasty Laboratory

In recognition of the rapid rise of big data and thiquity of powerful machines
capable of “learning,” in 2018 we established thackine Learning Arthroplasty
Laboratory (MLAL). It is our view that computer-tesalgorithms represent the primary
sustainable way for the future that orthopaedigsoins who desire to make sense of, and
take advantage of, all available data to yieldiést possible outcomes for patients and
the health care system. The MLAL was establishext@¢ate machine-learning algorithms
that would explore two core objectives directlyateld to the practice and progress of
orthopaedic surgery: (1) patient-specific, valusdzhcare and (2) human movement.
Orthopaedic care and the MLAL operates on two fomelatal planes: systems-based and
practice-based. At the system level, outcomes ants@re the two primary determinants
for value-based care. However, what is viewed gk m value by some patients may not
hold true for other individuals. This is evidentevhcomparing patients who desire to run
a marathon after their total hip arthroplasty verhose who simply want to make it to
the grocery store. Thus, “value” in medicine isiguatt-specific, and machine learning
offers the ability to account for these patienteliefactors and deliver a customized or
individualistic approach to value-based care. Wtiikebusiness of medicine is important
for survivorship of our industry, the art of prattig medicine rests on taking into
account patient-level preferences. With respettédVILAL’s practice-based goals, we
seek to find and apply machine-learning solutidvat improve upon the routine
orthopaedic practice of medicine by prioritizing thatient, assisting the physician, and

benefitting relevant stakeholders (e.g. hospitaigjtutions, and payers).
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Patient-Specific and Value-Based Care in the World of Arthroplasty

The early focus of the MLAL on value-based carefolilewed the legislation
and conversation surrounding alternative paymertaisoAPMs). In lower extremity
joint arthroplasty, the Comprehensive Care for tJRieplacement (CJR) model aims to
apply bundled payments and quality measures totivize high quality, coordinated
care at a reduced cost. The value-based progratedhé&s early success for programs
participating in the Bundled Payments for Care lonpment (BPCI) in total joint
arthroplasty. By aligning surgical and administratstaff to reduce clinical and financial
variations at one high volume orthopaedic hospliégigth of stay (LOS) decreased from
3.4 days to 2.7, catheter-associated urinary iné&ttions decreased to 0%, and 30-day
readmissions decreased from 5% to 1.6% [4]. Mone@&22,389 was saved over 271
patients, resulting in gain sharing of $159,57th®Centers for Medicare and Medicaid
Services (CMS) and $362,818 to the hospital. Whigdiminary successes have been
promising for controlling modifiable systemic rigctors related to inefficient care
delivery, “bundling care” as a definitive solutidnes not address patient-level risk
factors.

Bundled payment literature surrounding primaryltkieee arthroplasty (TKA)
and total hip arthroplasty (THA) demonstrates fattent comorbidities increase
perioperative complications and worse outcomesdratbsolely by surgeons and
hospitals, as insurers reimburse a flat rate [l8¢n with some of the most reproducible
procedures reimbursed by Medicare, a flat fee lfggramary joint arthroplasty patients
regardless of patient differences may not be aieradternative payment model (APM)

as the “one size fits all” approach does not acttampatient-specific risk. Furthermore,
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this engenders a volume-based practice wherebthieralower risk patients are
preferentially selected. This presents a uniquieatikhallenge for the orthopaedic
surgeon incentivized, and potentially pressuredcherry pick” young, healthy patients
and “lemon drop” older patients with comorbidit[|@$ To address this problem, and
perhaps provide guidance on how best to stratiflyagpropriately reward or compensate
care, we endeavored to create a model that woeldigirwhich patients will require
additional resources, allowing for preoperativeatagion and risk-sharing between
payers and providers.

As such, we created and validated a Naive Bayesiasifier algorithm on a
statewide administrative database of approxim#eg;000 primary total hip (THA) and
knee arthroplasty (TKA) patients to determine #asfbility of predicting length of stay
(LOS) and inpatient payments [5,6]. Representingdamentary form of machine
learning, the Naive Bayesian classifier is ablsttaly a large dataset, analyze patterns
based on the outcome variable of interest (i.e @od LOS), and predict what
predetermined “bucket” to classify a new patientsale the studied dataset would likely
resemble (i.e.. <$12,000, $12-24,000, >$24,000 dnights, 3-5 nights, or > 5 nights)
based on patterns from the previously imbibed @at@ddter stratifying these elective
patients by their level of preoperative medical ptarity using validated anesthesia
scoring, we determined the algorithm’s error indicBng cost of resources for each
stratum. Stated simply, the algorithm uncertaintjeoror” represents the risk assumed
by the treating surgeon and hospital in the busingsdel of a primary elective lower
extremity arthroplasty. For primary TKA patientsimbursement tiers warrant increases

of 3, 10, and 15% for moderate, major, and extreomorbidities; for primary THA
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patients, reimbursement tiers warrant increas&s b2, and 32% for moderate, major,
and extreme comorbidities [6,7]. These prelimirgtndies validate the role of machine
learning in creating a tiered, patient-specificrpaynt model for Medicare’s most
commonly reimbursed procedures in THA and TKA [6Hpwever, the limitation of this
model centered on the use of only a single databagelation, creating homogeneity
bias, and the inability of a Naive Bayesian modeautput a specific value rather than a
LOS or cost “bucket.”

Similarly, high-risk patients with hip and femuaétures managed with THA,
hemiarthroplasty, or open reduction and internadtfon (ORIF) are equally subject to
perioperative complications and worse outcomes l&\the initiative to bundle care for
hip and femur fractures has most recently beentethdny the CMS, these non-elective
procedures would almost certainly result in finahtbsses for all institutions treating
these patients, building barriers to care whereeptt are transferred to higher level
acuity centers that can endure the financial bur8erce little to no evidence has been
presented discussing the viability of such a maokstticularly to policymakers and
administrators, we similarly applied a Naive Bagasinodel to determine algorithm
accuracy in predicting sustainability of a PSPMgsalgorithm error [8]. The validated
algorithm resulted in an unsustainable, tiered paytrmodel that increased by 46% for
major comorbidities and 138% for extreme comori@ditOur findings demonstrate that
the patient’s preoperative medical comorbiditiesagjly contribute to differential costs
based on the expected payments in an equitabkenpatpecific payment model.

While the focus of our early value-based work hesrbon payment models, the

recently published approaches involve simple N8agesian approaches, which fall
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under the category of “supervised learning.” Whls tprocess, more human involvement
is required than “unsupervised learning,” as wigle learning architectures like the
artificial neural network (ANN). Such ANNSs offerglopportunity to improve algorithm
accuracy, imbibe external data in multiple formatsd require less effort from humans.
As an example, ANNSs represent a subtype of madbaraing that could process a
database full of radiographs labeled with implaggigns, attempt to identify a
correlation between the radiograph patterns anocegsd label, then subsequently
identify the implant from a new radiograph if tieglant has been previously “learned.”
In essence, these ANNSs represent a microcosm efiexge-based learning and are even
schematically organized after the human brain wéeral processing “nodes” densely
connected in an axonal fashion. Like a neuron,rmu® may receive data from several
other “dendritic” nodes but transmits data forwer@ unidirectional fashion. In order for
a node to “fire” or send data, the weight of theoiming variable must be high enough to
stimulate subsequent nodes and establish a caoredhtelationship. When an ANN is
being trained, all weights and thresholds arealhtiset to random values. Training data
is fed to the bottom layer, or the input layer, @&quhsses through the succeeding layers,
getting multiplied and added together in compleysyaintil it finally arrives, radically
transformed, at the output layer. During trainitigs weights and thresholds are
continually adjusted until training data with thearge labels consistently yield similar
outputs [19]. As such, the resulting algorithm atbofor interconnected relationships
between inputs at various levels, with an increasmmplexity of the model based on the

number of inputs. ANNs may be utilized to processidety of inputs (i.e. patient age,
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gender, comorbidities) into a single output predic(i.e. hospital charges), based on the
predicted tier that the patient would fall into.

Specifically, the MLAL has developed ANNs model@gponomic outcomes
(LOS, charges) following lower extremity arthrogigautilizing deep learning techniques
[9,10]. Using a cohort of 175,042 primary TKA patie with 15 pre-operative input
variables, the ANN predicted LOS, charges, andhdisge disposition with a
discriminatory power of 74.8, 82.8, and 76.1%, estipely, based on the area under the
curve (AUC) [9]. This model demonstrated increasghbursements by 2.0%, 21.8%
and 82.6% for moderate, major and severe comoudsditespectively. Similarly, an
ANN developed for primary THA demonstrated AUCS88f0%, 83.4%, and 79.4% for
LOS, charges, and disposition, respectively, witarges increasing by of 2.5%, 8.9%,
and 17.3% for moderate, major, and severe comaigsdrespectively [10]. As
additional data is collected in the future, the®dN& are capable of further learning and
adjustments in order to improve future predictiapabilities.

Future studies will use multiple databases actusglobe for internal and
external validation and algorithm refinement, pautarly in the ability to more closely
predict outcome variables. Presently, stratifyiatjgnts into “buckets” remains
suboptimal as this increases the risk of oversifyiply patient complexity. However, this
represents a first intermediate step to move beyloadone size fits all” bundled
payment. As we acquire finer data, algorithms tdlable to predict outcomes with finer
accuracy. Other applications of deep learning thapaedics may include data from the
electronic medical record, smartphone, or geograplpyeoperatively identify patients at

risk for readmissions or periprosthetic joint irtfens prior to the primary procedure.



200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

Mobile Health and Remote Patient Monitoring

Machine learning models may be used to processaagg dataset. Beyond the
large outcome datasets in registries, our mobigcds are collecting and storing vast
guantities of “small data” that too warrants stdioiyclinically meaningful insight.
Mobile devices such as smartphones and wearabkesbezome ubiquitous. More than
instant connectivity offered cellular networks ahd Internet either in your pocket or on
your wrist, these devices also represent senspehéaof storing tremendous amounts of
personal health data (“mHealth”). The wearablesketanas grown tremendously since
the announcement of the Jawbon€'Ujm 2011 and the subsequent release of the Fitbit
Flex™ in 2013 [11,12]. This relatively new market is egfed to be worth $34 billion by
2020 and remains a relatively underutilized todh@althcare [13]. Although one in six
Americans uses a wearable device and 77% of Amevican a smartphone, the health
care system has failed to meaningfully integrateadrthese technologies into clinical
practice that redress workflow, significantly impeocare, or decrease costs [14]. Using
mHealth, sensors incorporate many different tragkimodalities including
accelerometers, GPS, oximeters, electrocardiogrgynsscopes, and environmental
sensors that are currently being used by consutmérack general physical activity,
sleep, posture, and locomotion (number of stepedpand distance travelled). However,
a limitation of the current mHealth landscape & filagmentation and lack of
interconnectivity between the myriad of availaljps Moreover, skepticism over the
accuracy of wearables remain. Recently, smartpbased technologies have been found

to be accurate within 7° and 5° of goniometer messants for shoulder and knee range
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of motion, respectively [15, 20]. The fundamemstaéngth in mHealth relies on data, but
the current state of mobile apps has been limitethé closed nature of proprietary data
format, management, and analysis tools that iselaté app. In other words, all the
passive data collected by these devices are sitotesterogeneous formats dictated by
the various proprietary developers with little twceonsideration of aggregating all
available data to yield the greatest insights. dies the strength of the “open”
mHealth architecture, which offers universal daéendards and a global interconnected
network [15]. Only once apps are constructed ttopen” can the volume of data be
coherent, scaled, and meaningful. Certainly, aB alitelectronic medical records that
rely on remote servers, maintaining HIPAA compliamdth standard regulatory
oversight must be ensured prior to clinical adaptio

Once the “small data” of a given individual’s miatby-minute step count or
heart rate is successfully aggregated into big, dete then do we analyze and make
meaning of this continuous data stream? Machimaileg.once again becomes essential
in understanding mHealth, which is where the MLAlcritical. Moreover, to foster
bilateral engagement from patient and physiciaa user interface must be effortless and
utilize real-time feedback. For this reason, theMllhas partnered with a proprietary
data-driven orthopaedic solutions developer (FoaigM, Santa Monica, California) to
create a remote patient monitoring (RPM) systerhléwerages the power of mHealth
data using open architecture, uses artificial igighce algorithms to “learn” human
movements, and provides real-time feedback. Inrdodehe system to “learn” a
movement, an activity is labeled (i.e. “straighg raise”) and subsequently performed

while operating the wearable and all positionahalg from the sensors are analyzed and
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“taught” that a particular movement refers to #msion. With enough permutations and
repetitions of a particular activity, the algorithragins to recognize and provide
feedback regarding an activity. Unlike other matfs, this RPM system is freely
available, compatible with any consumer mobile deyand broadly scalable. While the
RPM platform is able to study and provide quarititateedback on any human body
movement, from yoga poses to baseball pitchinghawe focused on applying this
technology to the primary arthroplasty setting [16]

Presently, measurement after TKA has traditionadlgn accomplished through
clinician in-office assessments, validated surveyfoth. Both of these assessments
have inherent limitations related to subjectivipjectivity, cost-effectiveness, and time.
With the understanding that patients are demandrgased perioperative support and
hospitals are pushed to provide higher quality latxeer cost, we have designed a tailored
RPM platform for the TKA patient that enables dedature of the following: home
exercise plan compliance, daily step count (i.@viyg level), daily knee range of
motion, weekly patient-reported outcome scores (MRQand opioid use. By providing
a knee sleeve that pairs to the patient’s smarglfeigure 1), we prospectively studied
25 primary TKA patients. Prior to study initiatiome recorded the difference in knee
flexion between the app and a goniometer measurenyemsingle clinician across 10
different knees for 5 arbitrary angles each (ra®ge:35°), which revealed a mean
difference of 7.2found to be statistically equivocal (p=0.41). Umtady completion at
90 days postoperatively, not a single patient hadtarrupted data collection,
demonstrating excellent connectivity [17]. Moreq\adl 22 of the 25 patients available

for follow-up interviews found the system motivagiand engaging. Daily home exercise



269 program compliance with automated notification neders pushed to the patient was
270  62% within the first 90 days postoperatively. Ditan two patients are presented

271 (Figure 2). This platform is one of several mobile applioas being used worldwide to
272  perioperatively assess and communicate with TKAept [18—20]. Opioid use typically
273 stopped by post-operative day five, and mean niglgiturned to baseline at six weeks.
274  This study addresses a critical barrier in the wapdf outcome and therapy compliance
275 data that has been previously limited by patieoess, discontinuous data, high overhead
276 cost, and capable technology.

277 From the patient perspective, we have found the RRitflorm to engender

278 engagement with their recovery by gamifying theatglitation experience with real-time
279 feedback with a live avatar, a dashboard that ik blnician facing and patient facing,
280 and push notifications reminding the patient tdfqren exercises and complete surveys.
281 Aside from potentially decompressing redundantpat clinic visits in the global

282 period for the surgeon or physician assistantetieno change to the workflow or

283 additional burden of expectation aside from a raatifon that a patient has not reached
284 90 degrees of flexion at a predetermined post-t¢igertime point. Additionally, CMS
285 may permit durable medical equipment and RPM lglfor this system. Hospitals stand
286 to gain savings in decreased outpatient therapgrekfures, allowing for more profit
287 from the flat bundled payment, as well as potemtédreases in outcome tracking

288 expenditures. To administrators and policy makihis,RPM platform provides the

289 objective parametric data needed in an increaswvajlye-based care model. Specifically,
290 knowledge of the preoperative state in terms otfion, pain, and limitations in

291 activities of daily living may be postoperativelgrapared to determine the “value” of the
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TKA. Conversely, this technology offers surgeore dpportunity to identify potential
causes for unfavorable outcomes by capturing tlyemapcompliance despite a thorough
discussion of expectation management and well-égdaurgical plan. These benefits
are realized with little to no overhead or admngisve cost given the ubiquity of mobile
devices and Internet connectivity.

While the MLAL is using the technology for immediatlinical application at our
institution, the 18,000 data points gathered frosingle set of patient exercises offers a
valuable small data repository of human movemesttriiay be used for further
investigational biomechanics studies. One of tleaigst implications of this research is
characterization of the “normal” postoperativedrpry using continuous data points
that can be used for benchmarking. As more indadidad “small data” is aggregated
from patients, population-level commonalities aiftecences may be analyzed for
contributing factors (i.e. socioeconomic status\dge, age, and comorbidities) to guide
expectation management, shared decision-makingnization of any modifiable risk

factors, and future policy.

Conclusion

Not too long ago, big business was a foreign contmephysicians. Today, many
are well versed in the practice and have been daeself-teach fundamental business
principles to adapt to the changing times of amdasingly value-based care model.
Tomorrow’s next challenge for the field of medicia@d particularly value-centered
orthopaedics, is utilizing big data. The rapid natth which we are acquiring and storing

continuous data, whether passively or actively, algas an advanced processing
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approach: machine learning. While machine learnémgains a subset of artificial
intelligence, the dissociation between man andrtaehine is a concept we must begin to
embrace as a profession and subsequently harneas benefit. By carefully studying
machine learning techniques (i.e. MLAL) and adgptimem into our clinical workflow
and systemic infrastructure, we may be successfathieving “high performance
medicine.” For orthopaedics, and high volume subistées like arthroplasty in
particular, this means remaining at the forefrontnowledge of the strengths and
limitations of these evolving technologies that taestainly will directly impact our

field. Permitting automation should not necessaalge suspicion, as certain time-
consuming processes (i.e. “clicks” in the electcaniedical record) may indeed warrant
automation. On the other hand, as physicians we leas) to recognize how these
algorithms can be applied to calculate previousigneasurable metrics, from
preoperative patient risk to rehabilitation compdia, and offer great room for innovation
that may translate into improved patient care, cedwsurgeon burnout, and controlled

resource costs.
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399
400 Figure 1. Schematic of the remote patient monitoring platfoFirst, the knee sleeve

401 transmits basic spatial data to the smartphonegaristandard post-operative

402 rehabilitation TKA exercise. Then, the smartphaaadmits this data through the

403 artificial intelligence (Al) processor that analgzte data and immediately returns real-
404 time feedback to the patient regarding number pétidons, max flexion, or if lacking
405 extension. If the patient does not reach @flexion bytwo weeks postoperatively, the
406 surgeon is notified.
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Figure 2. Summative dashboard data from two patients recoy&om TKA who both
found the remote patient monitoring platform “higinhotivating.” The trend of their
rehabilitation compliance and improving outcomerssdi.e. KOOS, self-reported), knee
flexion, pain (self-reported), activity (i.e. stepunt), and opioid independency (self-
reported) are depicted.



