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Remote Patient Monitoring using Mobile Health for Total Knee Arthroplasty: Validation 1 

of a Wearable and Machine Learning-Based Surveillance Platform 2 

 3 

ABSTRACT 4 

 5 

Background: Recent technologic advances capable of measuring outcomes after total knee 6 

arthroplasty (TKA) are critical in quantifying value-based care. Traditionally accomplished 7 

through office assessments and surveys with variable follow-up, this strategy lacks continuous 8 

and complete data. The primary objective of this study was to validate the feasibility of a remote 9 

patient monitoring (RPM) system in terms of the frequency of data interruptions and patient 10 

acceptance. Secondarily, we report pilot data for: (1) mobility; (2) knee range of motion (ROM), 11 

(3) patient-reported outcome measures (PROMs); (4) opioid use; and (5) HEP compliance.  12 

  13 

Methods: A pilot cohort of 25 patients undergoing primary TKA for osteoarthritis was enrolled. 14 

Patients downloaded the RPM mobile application preoperatively to collect baseline activity and 15 

PROMs data, and the wearable knee sleeve was paired to the smartphone during admission. The 16 

following was collected up to 3 months postoperatively: mobility (step count), ROM, PROMs, 17 

opioid consumption, and HEP compliance. Validation was determined by acquisition of 18 

continuous data and patient tolerance at semi-structured interviews 3 months post-operatively.  19 

  20 

Results: Of the 25 enrolled patients, 100% had uninterrupted passive data collection. Of the 22 21 

available for follow-up interviews, all found the system motivating and engaging. Mean mobility 22 

returned to baseline within 6 weeks and exceeded preoperative baseline by 30% at 3 months. 23 

Mean knee flexion achieved was 119°, which did not differ from clinic measurements 24 

(p=0.31). Mean KOOS improvement was 39.3 after 3 months (range:3-60). Opioid use typically 25 

stopped by post-operative day 5. HEP compliance was 62% (range:0-99%).   26 

  27 

Conclusions: In this pilot study, we established the ability to remotely acquire continuous data 28 

for TKA patients, who found the application to be engaging. RPM offers the newfound ability to 29 

more completely evaluate the TKA patient in terms of mobility and rehabilitation compliance. 30 

Study with more patients is required to establish clinical significance. 31 

 32 

Key words: remote patient monitoring, wearable technology, machine learning, total knee arthroplasty 33 

(TKA), mHealth, telemedicine 34 

 35 

36 
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Introduction 37 

Critical barriers in defining the value of elective orthopaedic surgery, specifically total 38 

knee arthroplasty (TKA), include reliable outcome capture and patient compliance. Outcome 39 

measurement after TKA, however, has traditionally been accomplished with periodic in-office 40 

assessments, validated surveys, or both, without continuous data. Both of these methods have 41 

inherent limitations related to subjectivity, objectivity, cost-effectiveness, and time. Recent 42 

technologic advances, namely smartphones, wearable sensors, and machine learning processes, 43 

have grown commonplace and engendered the field of mobile health, or mHealth, which may 44 

mitigate these post-operative patient monitoring issues following TKA [1]. A remote patient 45 

monitoring (RPM) platform that uses wearable technology may be employed to holistically 46 

capture the status of a patients after TKA to provide both continuous subjective and objective 47 

data. Such a system that leverages commercially available technologies, such as the smartphone, 48 

offers the ability to provide additional insight into the patient’s recovery including home exercise 49 

plan compliance with physical therapy and overall mobility. Moreover, the opportunity to 50 

communicate value and manage expectations with the creation of post-operative milestones is 51 

now possible. The omnipresent sensors present on consumer mobile devices, such as the iPhone 52 

(Apple, Cupertino, California) or Android (Google, Mountain View, California), passively 53 

capture knee data amenable to interpretation by a machine learning algorithm that can display 54 

real-time feedback for the post-TKA joint.  55 

Although several studies have demonstrated promise in the utilization of wearable 56 

technology in TKA rehabilitation, previously employed platforms are limited by the lack of 57 

interconnectivity between applications, poor user engagement, high cost of sensors and 58 

deployment, and inability to scale [2–4]. In order to address these barriers, a machine learning-59 
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based RPM system using an open source software development kit (SDK) designed for 60 

commercially available smartphones was designed (Focus Ventures, Santa Monica, California). 61 

In recent years, there has been growth in the usage of SDKs to design open source technology 62 

that may be incrementally updated and readily shared with software developers, thereby 63 

obviating the concerns of prior attempts to integrate mHealth into clinical practice [5,6]. SDKs 64 

have advanced to include machine learning capacity, allowing the software to automate 65 

processes through pattern recognition and principles of artificial intelligence, probability theory, 66 

statistical physics, data mining, and pattern recognition from empirical data [7,8]. The advances 67 

in the sensors of modern smartphones and wearables have permitted the development of this 68 

RPM system to gather user data passively from the accelerometer, gyroscope, and magnetometer 69 

to filter and process complex data, “learn” a given motor task after minimal repetitions, assess 70 

compliance for both repetitions and form, and then report feedback with real-time analysis 71 

[9,10]. The validation of an SDK that can learn complex spatial movements to assess for 72 

compliance with TKA therapy exercise, when coupled with PROMs and other functional data, 73 

may portend favorable adoption of mHealth by reducing the amount of time patients spend 74 

accessing care while simultaneously reducing systemic costs and improving physician efficiency 75 

for high value healthcare delivery [11–13].  76 

To date, no open source, scalable SDK capable of learning and analyzing complex spatial 77 

movements has been developed or validated in the clinical setting of an RPM system that 78 

integrates with commercially available smartphones for the surveillance of patients following 79 

lower extremity arthroplasty, namely TKA. The RPM system studied presents the newfound 80 

opportunity to holistically capture the patient’s recovery in the form of continuous data, objective 81 

mobility and joint-specific metrics, pain management data, and home exercise program (HEP) 82 
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compliance.  While the promise of such a system is great during a time whereby cost 83 

containment and patient experience are invaluable in the new value-based era of orthopaedics, 84 

validation is prerequisite to determine feasibility prior to scalability. Validation for this RPM 85 

system was defined by the presence of an uninterrupted stream of continuous daily patient data, 86 

as well as patient acceptance of the technology via semi-structured interviews. As such, the 87 

primary objective of this study was to validate the feasibility in terms of the frequency of data 88 

interruptions and patient acceptance. Secondarily, we report the pilot data in terms of: (1) 89 

mobility; (2) knee range of motion (ROM), (3) patient-reported outcome measures (PROMs); (4) 90 

opioid use; and (5) HEP compliance. We hypothesized the older subpopulation of patients would 91 

have technical challenges and require oversight, causing data loss. Overall, we expected patients 92 

to engage with their recovery data and HEP compliance to be consistent with the previously 93 

reported rate of 30% [14].   94 

95 
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Materials & Methods 96 

 A cohort of 25 patients undergoing primary TKA for osteoarthritis at our hospital were 97 

enrolled into the study under IRB approval and registration on ClinicalTrials.gov and RedCap 98 

data compliance standards. Funding was acquired in the form of grant support from the 99 

Orthopaedic Research and Education Foundation.  100 

Patient Cohort 101 

Patient inclusion criteria were as follows: (1) patients undergoing primary TKA for 102 

osteoarthritis, (2) patients who have an iOS smartphone and carry it with them daily, (3) patients 103 

who reside in a home and not a facility or rehabilitation center, (4) patients under the age of 80 104 

years, (5) patients who preoperatively are not dependent on assist devices for more than a year 105 

due to the injury beyond the affected knee or other functional reasons, (6) patients discharged to 106 

home. Exclusion criteria as follows: (1) patients with inflammatory or post-traumatic arthritis, 107 

(2) patients receiving active or maintenance treatment for cancer or solid organ and/or marrow 108 

transplant, (3) patients with any other medical issues limiting mobility and function, including 109 

cardiopulmonary, gastrointestinal, and hematologic comorbidities, (4) patients with a history of 110 

periprosthetic joint infection of any joint, (5) patients who have a history of native septic arthritis 111 

in the operative joint, (6) patients who are functionally immobilized or residing anywhere other 112 

than a home (nursing facility, rehabilitation centers), (7) patients who preoperatively use an 113 

assist device for more than a year (i.e. cane, walker) for joints other than the knee undergoing 114 

TKA during the study, (8) patients over the age of 80 years, (9) patients discharged anywhere 115 

besides home from the hospital (i.e. skilled nursing facilities or acute rehabilitation centers). 116 

Patients on long-term anticoagulation were not excluded.  117 

Procedure 118 
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Patients downloaded the (Focus Ventures, Santa Monica, California) mobile application 119 

(“app”), termed “TKR,” onto their personal iPhones (Apple, Cupertino, California) to record 120 

preoperative mobility (daily steps) and PROMs (KOOS JR, KOOS-QOL Domain, VAS Pain) 121 

two to four weeks prior to surgery. During the hospital admission, the knee sleeve was paired 122 

with the patient’s iPhone via Bluetooth. Postoperatively, the patient was instructed to perform 123 

daily exercises and a weekly survey, which the TKR app notified the patient to complete. 124 

Between the knee sleeve and the smartphone, the following five data points were acquired: 125 

mobility (daily step count; passive), weekly ROM check (knee flexion; active), weekly PROMs 126 

(KOOS Jr, KOOS-QOL Domain, VAS Pain; active), opioid consumption (number of tablets in 127 

past week; active), and home exercise plan (HEP) compliance (minimum daily requirement of at 128 

least 10 repetitions from a single set of exercises; active). A schematic of data transmission from 129 

sleeve and smartphone to the dashboard and on to the machine learning algorithm is depicted in 130 

Figure 1. The TKR app was patient-facing and provided patients with full access to their data as 131 

well as an avatar depicting their knee ROM in real time while performing each repetition from 132 

any of the four available sets of exercises in Figure 2.  133 

Mobility data was continuously and passively recorded by the smartphone through the 134 

smartphone’s native sensors (accelerometer, gyroscope, magnetometer). From a technical 135 

standpoint, the sleeve used was a simple neoprene sleeve (Figure 3) with two Bluetooth sensors 136 

that transmitted spatial orientation changes in three dimensions to the smartphone, which 137 

processed the data using the machine learning algorithm software and recorded the ROM, as 138 

previously validated for accurate measurement in the shoulder [15]. The knee sleeve was worn 139 

part-time only when performing home exercise program exercises independent of therapist 140 

supervision. In other words, the function of the sleeve was to actively record the weekly joint-141 
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specific data: ROM check and daily compliance check. The smartphone functioned to pair with 142 

the sleeve, provide automated reminder notifications, and serve to passively and actively collect 143 

data. The smartphone passively recorded mobility via step count and actively collected weekly 144 

PROMs surveys, including opioid consumption. Prior to study initiation, we recorded the 145 

difference in knee flexion between the app and a goniometer measurement by a single clinician 146 

across 10 different knees for 5 arbitrary angles each (range: 5º-135º), which revealed a mean 147 

difference of 7.2º found to be statistically equivocal (p=0.41). 148 

Validation 149 

 Validation was defined by the presence of an uninterrupted stream of continuous daily 150 

patient data and patient acceptance of the technology via semi-structured interviews. If a day 151 

passed without a single data point transmitted, this was considered a disruption in the RPM 152 

system. Semi-structured interview questions at 3 months postoperatively can be found in Table 153 

1.  154 

Continuous RPM Data Collection 155 

 Data collected from the 25 enrolled patients were as follows: (1) mobility; (2) knee 156 

ROM, (3) patient-reported outcome measures (PROMs); (4) opioid use; and (5) HEP 157 

compliance. Mobility was measured passively and as daily steps, as determined by the internal 158 

proprietary iOS algorithm combining input from location services (i.e. GPS tracking), 159 

accelerometer, gyroscope, and magnetometer on all iPhones.  Knee ROM was measured actively 160 

and prompted of all patients to perform over the weekend to determine max flexion with the heel 161 

slide. The surgeon received a notification if the patient did not reach 90 degrees of flexion at 2 162 

weeks. Similarly, PROMs and number of opioid tablets used in the past 7 days were measured 163 

actively and prompted over the weekend. The surgical and postoperative pain protocol entailed a 164 
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preoperative assessment for patients at risk for opioid dependence, intraoperative spinal and local 165 

anesthesia, and a seven-day course of postoperative opioid tablets. HEP compliance was 166 

measured actively, and patients received daily reminders from the first postoperative day to the 167 

90th to perform exercises. The percentage of days out of 90 whereby patients performed at least 168 

one set of 10 repetitions was reported. Short demo videos reminding patients on how each 169 

exercise is performed was available prior to initiating exercise.  170 

Privacy 171 

All data was deidentified and stored on a HIPAA-compliant server on the cloud (Amazon 172 

Web Services, Seattle, Washington). The patient cohort was followed for three months post-173 

operatively with all aforementioned five data points stored on a dashboard visible to only the 174 

patient and surgeon, using password-protected login credentials.  175 

Participants were assigned a random patient identification (ID) number that was then be 176 

used for all documentation and further study analysis. The data collected from the app was 177 

associated with each participant from the user ID entered in the app. The only data transmitted to 178 

the SDK software was the ID number and the associated ROM, HEP compliance, steps, and 179 

PROMs data. The investigators recorded the data in REDCap with the associated ID number, and 180 

the key corresponding patient information to the ID number was stored in a binder in a locked 181 

IRB office at the authors’ institution. No participant personal health information data was logged 182 

at any point on the app or the smartphone.  183 

Statistical analysis 184 

A t-test was used to assess agreement between clinician-derived ROM versus wearable-185 

derived ROM at 3 months. Descriptive analysis was employed to summarize the results from the 186 

semi-structured interviews. A priori power analysis indicated a 94% chance of detecting a large 187 
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effect size and a 60% chance of detecting a medium effect size at the 5% confidence level with a 188 

cohort of 25 patients. All data analysis was performed using Microsoft Excel analytics software 189 

version 14.5.4 (Microsoft Corporation; Redmond, WA). A p-value cutoff of <0.05 was used to 190 

determine statistical significance. 191 

192 
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Results 193 

A total of 25 patients were prospectively enrolled and followed from two to four weeks 194 

preoperatively to 12 weeks post-operatively. Of the 25 enrolled, mean age was 64.3, 56% 195 

female, and the mean BMI was 33.3. Since downloading the TKR app, no data disruptions 196 

requiring technical intervention occurred for a single patient in this 14-week period. The 197 

outcome metric with zero loss was the passively collected daily step count, the surrogate for 198 

mobility.  199 

A total of 22 patients were available for semi-structured interviews at three months 200 

follow-up (88%). Three patients were unavailable for three-month follow-up, each citing 201 

complicating factors including a family emergency, chronic pain, and psychiatric conditions. On 202 

a scale of 1-10 in order of increasing difficulty, patients rated the RPM system 2.6. All patients 203 

found the RPM system “motivating” or “engaging.” Patients cited the following reasons for 204 

engagement with the system: facile user experience of the app, real-time feedback with the 205 

avatar and dashboard, daily notifications. All patients reported they would recommend the RPM 206 

system to other patients recovering from TKA. The most common commentary that emerged 207 

from 8 of the 22 patients (36%) was related to the sleeve’s low battery life, which required 208 

charging once every three days. A total of 11 of the 22 patients (50%) specifically requested 209 

more exercises to advance their regiment. 210 

 On average, mean mobility returned to baseline within 6 weeks and exceeded preoperative 211 

baseline by 30% at 3 months (mean: 4,654 steps per day, range: 1,154-12,108 steps per day). 212 

Mean knee flexion achieved was 119°, which did not differ from 12 week clinic measurements 213 

(p=0.31). Mean KOOS improvement was 39.3 points after 3 months (range: 3-60). Opioid use 214 

typically stopped by post-operative day 5. One patient had a spike in pain at five weeks upon 215 
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returning to work, which led the team to make contact with the patient via phone and schedule an 216 

earlier follow-up appointment. Daily HEP compliance was 62% (range: 0-99%). Figure 4 and 217 

Figure 5 depict two example patients from the pilot with data graphically depicted. 218 

 Of the patients who did not follow up for semi-structured interviews at 12 weeks, all three 219 

did not achieve 90° of flexion by 2 weeks, and their mean HEP compliance was 13.3% and 220 

KOOS increase of 15.  221 

222 
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Discussion 223 

This pilot study represents the introduction of a scalable RPM platform in lower 224 

extremity arthroplasty that leverages several commercially available technologic advances and 225 

techniques, from the smartphone to machine learning algorithms to wearable sleeves to open 226 

source SDKs. While commercial availability without additional hardware beyond a disposable 227 

sleeve suggests cost effectiveness, the primary objective of this study was to first determine if 228 

validation of an RPM system predicated on continuous data would be feasible and acceptable to 229 

patients in the routine clinical pathway following TKA. Not only was the system low 230 

maintenance, it also provided a continuous stream of previously immeasurable data without any 231 

loss, portraying a more accurate picture of the patient’s recovery following TKA. A total of 88% 232 

of patients were available for semi-structured interviews, and all recommended the platform to 233 

others and found it to be “engaging,” “motivating,” and easy to use. Data from 22 patients were 234 

available including mobility, weekly ROM checks, PROMs (KOOS and VAS scales), opioid use, 235 

and HEP compliance. While not enough patients were available to provide reliable 236 

benchmarking thresholds, this pilot data establishes the precedent for future studies to more 237 

completely capture recovery after TKA. Our hypothesis of patients engaging with their data in 238 

the mobile application was upheld. However, our other hypotheses were disproven as there was 239 

no data loss from technical issues and the HEP compliance of 62% was nearly double that of the 240 

previously reported rate of 30% [14].  241 

The current paradigm of capturing patient data relies on administrators, postal mail, or 242 

faxed questionnaires, which represent inefficient and costly processes that merely portray a small 243 

portion of a patient’s recovery. However, the emphasis on delivering “high value” care relies on 244 

objective, accurate, and specific data up to 90 days postoperatively under the Bundled Payments 245 
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for Care Improvement (BPCI) initiative [16]. Presently, 90% of post-operative recovery occurs 246 

out of sight from care teams documenting progress [20]. This RPM system combines several 247 

recent technologic advances to demonstrate functionality in aggregating individualized “small 248 

data” on a daily basis for the post-TKA patient. As more patients are enrolled, population-level 249 

commonalities and differences may be analyzed for contributing factors (i.e. socioeconomic 250 

status, gender, age, and comorbidities) to guide expectation management, shared decision-251 

making, optimization of any modifiable risk factors, and future policy. The growing ubiquity of 252 

smartphones with nearly 77% of Americans owning a smartphone unlocks the potential of 253 

mHealth and wearable sensors that can be analyzed by a machine learning algorithm [17].  With 254 

the introduction and validation of this cost-effective and readily usable technology, the practice 255 

and study of orthopaedics may be fundamentally changed in several dimensions. Visualization of 256 

personal health data in terms of mobility (steps per day), range of motion (maximum knee 257 

flexion), HEP compliance, and PROMs serves not to just provide previously elusive holistic data 258 

for expectation management and patient-specific counseling but also may increase engagement 259 

[18]. To surgeons, administrators, and policy makers, this technology provides the objective 260 

parametric data needed to communicate the business model of lower extremity arthroplasty.  261 

Specifically, knowledge of the preoperative state in terms of function, pain, and limitations in 262 

activities of daily living may be postoperatively compared to determine the “value” of the TKA 263 

[19]. On the other hand, this technology offers surgeons the opportunity to identify potential 264 

causes of unfavorable outcomes by capturing therapy noncompliance despite a thorough 265 

discussion of expectation management and a well-executed surgical plan.  266 

The results of this study and RPM system offered two potentially important insights: 267 

patient engagement and newfound outcome metrics in mobility and HEP compliance. 268 
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Several factors contributed to patient engagement: (1) user-friendly TKR app interface; 269 

(2) an avatar providing real-time motion feedback of the joint during exercise; (3) a chart 270 

demonstrating daily progression; and (4) direct notifications encouraging exercise and 271 

self-assessment. In addition to the feedback from patients reporting ease of use (2.6 of 272 

10), the finding that half of the interviewed patients requested more advanced exercises 273 

and the high HEP compliance rate of 62% suggests motivation, although a randomized 274 

control trial would be necessary to fully assess this effect. The availability of mobility 275 

data in the form of daily steps for patients who travel with their smartphones is a 276 

sufficient surrogate to paint a data-driven portrait of a patient’s health after TKA. 277 

Knowledge that compliance is being monitored may induce an unintentional, albeit 278 

beneficial, Hawthorne effect whereby patients are more likely to comply with exercises. 279 

With the rise of telemedicine visits, this RPM system requires no additional effort from 280 

the surgeon seeking to better evaluate the TKA patient’s recovery across a spectrum of 281 

subjective, objective, joint-specific, mobility-based, and pain-related parameters. With 282 

the recent creation of RPM codes (i.e. Current Procedural Terminology codes 99453, 283 

99454, 99457) by CMS reimbursable for Medicare patients, margins up approximating 284 

$350 per patient outside of the bundle for early adopters are advertised, offering the fiscal 285 

incentive for both surgeons and hospitals to purchase such RPM systems to improve 286 

reimbursement beyond patient engagement and data collection. With platforms that 287 

require no additional hardware outside of a patient’s personal smart device and a 288 

disposable sleeve approaching less than $20 per sleeve at economies of scale, there exists 289 

the potential for economic arbitration resulting in synergistically vested parties across 290 

patients, surgeons, hospitals, and payers.  291 
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Despite the promise of this data, this study has limitations. First and foremost, the data 292 

represents a small cohort with no broadly generalizable conclusions. Multivariate analysis was 293 

impossible to derive patient-specific insights due to the small sample size. Compliance of the 294 

system is potentially underestimated, as patients may not have performed exercises using the 295 

system if they exercised with a physical therapist.  The major innovation of this RPM system 296 

extends beyond the passive, disjointed capture of outcomes to transform any smartphone into an 297 

instrument for reliable, continuous data capture. However, the 23% of Americans who do not 298 

presently own a smartphone unable to use this platform are at risk for selection bias, potentially 299 

worsening access disparities [17]. Additionally, opioid use was collected on a weekly basis, and 300 

thus was potentially subject to recall bias by patients. It is important to consider that our 301 

threshold for defining daily compliance was low, as performance of only one of four available 302 

exercises with 10 repetitions may not be enough to constitute significant rehabilitation. However, 303 

despite these limitations, this pilot study represents an initial validation of this machine-learning 304 

based wearable technology. 305 

The emergence of wearable and smartphone technologies serendipitously arrives at a 306 

time in which the field of orthopaedic surgery is focused on cost savings, increased efficiency, 307 

and the reexamination of how we assess patient outcomes. With alternative pay models, namely 308 

the BPCI Initiative in lower extremity arthroplasty, reducing cost and physician resources 309 

required to quickly identify the patient who is thriving after surgery versus those who are not 310 

remains a potential application. Thus, RPM technology powered by mHealth, machine learning, 311 

and an open source SDK may offer the long-awaited breakthrough in telemedicine that 312 

harmonizes with value-based medicine. Moreover, the potential to skip routine surveillance in 313 

well patients provides the opportunity to decompress the busy surgeon’s clinic and save the 314 
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patient’s time, as seen in Figure 6. In summary, the RPM system was found to be a reliable, low 315 

maintenance, and well-received platform for the patient recovering from TKA. Preliminary data 316 

indicates a new frontier in lower extremity arthroplasty whereby RPM may be a feasible option 317 

to engage patients, quantifiably communicate procedural value, efficiently survey patients 318 

postoperatively, and build a novel registry of movement data for further study. Though 319 

promising, more studies are required to evaluate the clinical significance of the intervention and 320 

harness its full potential to effect change on the levels of population health, policy, and true 321 

medical transformation. 322 

323 
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Tables 324 

Table 1. List of semi-structured interview questions asked 12 weeks after TKA  325 

  326 

Semi-Structured Interview Questions 

How easy did you find the technology to use on a scale of 1-10? (1 easiest, 10 most difficult) 

Did you feel the technology’s feedback motivated you in your recovery from TKA? (Yes or No) 

Would you recommend the technology to others recovering from TKA? (Yes or no) 

Do you have any suggestions or areas of improvement?  

 327 

 328 

329 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 18

FIGURE LEGENDS 330 

Figure 1. A schematic of the RPM system depicting the wearable knee sleeve transmitting 331 

motion data to the smartphone, which then transmits this and all other data (steps, PROMs, 332 

opioid use) to the dashboard, which then is analyzed by the machine-learning algorithm and 333 

instantaneously transmitted back to the patient while being stored on the care team dashboard. 334 

 335 

Figure 2. Schematic of four available exercises available post-TKA to enrolled patients: straight 336 

leg raise (top left), heel slide (top right), standing hamstring curls (bottom left), long arc quads 337 

(bottom right).  338 

339 
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Figure 3. Photograph of the simple knee sleeve with Velcro straps and Bluetooth-enabled 340 

sensors that transmit positional data directly to the smartphone for machine-learning analysis and 341 

real-time display of ROM. 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

Figure 4.  Example dashboard of a patient who was moderately compliant (34%) and achieved 350 

maximum satisfaction at 10 weeks, baseline mobility at 6 weeks, and no pain by 6 weeks. 351 

 352 

 353 

 354 
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Figure 5. Example dashboard of a patient who was highly compliant with HEP (88%), sustained 355 

a spike in pain five weeks into her recovery that correlated with an additional clinic visit, and 356 

still reached maximum satisfaction at 12 weeks with return to mobility baseline at 6 weeks. 357 

Figure 6. Schematic representing potential paradigm shift in post-operative monitoring of TKA 358 

with the RPM system. 359 

 360 

 361 

 362 

 363 
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